Preparation, Characterization, and Reactions of Novel Iron(III) Porphyrin Dication Complexes

Hiroshi Tsurumaki, Yoshihito Watanabe, and Isao Morishima

Contribution from the Division of Molecular Engineering, Graduate School of Engineering, Kvoto University, Kyoto 606, Japan

Received May 26, 1993®

Abstract: A dication complex of (meso-tetramesity)porphynato)iron(III) (Fe^{III}TMP) has been prepared by the reaction of Fe¹¹¹TMP N-oxide with trifluoroacetic acid in toluene at low temperature. The electronic structure of the complex is characterized to be ferric high spin with rhombic symmetry on the basis of iodometric titration and UV-vis, ²H NMR, and EPR spectroscopies. A value of E/D, which shows rhombicity of the heme environment, was estimated to be 0.29 by EPR measurement. An unusually high E/D value indicates that the symmetry of the ligand field around the iron is rather similar to those of nonheme ferric complexes, and the porphyrin ring could exhibit large nonplanarity. While tetraphenylporphyrin dication complexes of Zn, Mg, and Ni are known to react with methanol to afford the corresponding isoporphyrins, the dication complex of Fe^{III}TMP was found to react with methanol to yield Fe^{III}TMP N-methoxide. possibly due to the sterric barrier of the o-methyl groups of mesitylene. The Fe^{III}TMP dication is not thermally stable and is readily reduced to the Fe^{III}TMP π -cation radical even at -25 °C in toluene. The dication complex of (mesotetrakis(2,6-dichlorophenyl)porphynato)iron(III) (FellITDCPP) was also prepared by the same reaction. The preparation of the dication complex of Fe(III) porphyrin demonstrates possible manipulation of the two-electron-oxidized equivalent in various forms by Fe porphyrin, i.e., the O—Fe(IV) porphyrin π -cation radical, O—Fe(V) porphyrin, Fe(III) porphyrin N-oxide, and the Fe(III) porphyrin dication.

Introduction

Recent model studies of cytochrome P-450 by using iron complexes of tetraphenylporphyrin derivatives have served to elucidate the detail of the active species responsible for the oxygenation of foreign compounds, i.e., a two-electron-oxidized oxo-iron complex, equivalent to compound I of peroxidases. On the other hand, Fe(III) porphyrin N-oxide had been proposed for a possible description of the active species on the basis of the chemical and spectroscopic behavior of Fe(III) porphyrin-carbene adducts.2 However, the candidacy of the N-oxide has been ruled out by recent preparation of its model complex, Fe^{III}TMP N-oxide (1a). 3a,b In our effort to transform 1a to the reactive species, we have found the reaction of 1a and acid gives a new FeTMP complex (3a), which is formally two electron oxidized from Fe¹¹¹TMP. Preliminary work indicates 3a being the Fe¹¹¹ TMP dication.⁴ Interestingly, an Fe(III) porphyrin dication intermediate has been recently suggested as a candidate of compound 0, a precursor of compound I, in the reaction of H₂O₂ with horseradish peroxidase;⁵ however, UV-vis spectra of compound 0 are different from that of 3a.

Metalloporphyrin dication complexes of Mg, Zn, and Ni have been prepared by electrochemical oxidation and characterized

Abstract published in Advance ACS Abstracts, November 15, 1993. (1) (a) Guengerich, F. P.; Macdonald, T. L. Acc. Chem. Res. 1984, 17, 9-16. McMurry, T. J.; Groves, J. T. In Cytochrome P-450: Structure, Mechanism and Biochemistry; Ortiz de Montellano, P. R., Ed.; Plenum: New York, 1986; pp 1-28. (b) White, R. E.; Coon, M. J. Annu. Rev. Biochem. 1980, 50, 315-356. (c) Groves, J. T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.; Evans, B. J. J. Am. Chem. Soc. 1981, 103, 2884-2886. (d) Groves, J. T.; Watanabe, Y. J. Am. Chem. Soc. 1986, 108, 7834-7836. (e) Yamaguchi, Y.; Watanabe, Y.; Morishima, I. J. Am. Chem. Soc. 1993, 115, 4058-4065. (f) Higuchi, T.; Shimada, K.; Maruyama, N.; Hirobe, M. J. Am. Chem. Soc. 1993, 115, 7551-7552.

(2) Mansuy, D.; Morgenstern-Badarau, I.; Lange, M.; Gans, P. Inorg.

by UV-vis spectroscopy. 6 Though the second oxidation potential obtained by cyclic voltammetry of some Fe(III) porphyrin complexes was attributed to Fe(III) porphyrin dication formation,⁷ their physical properties such as UV-vis, EPR, and NMR spectra have never been observed, possibly due to their instability under the conditions. Thus, preparation, characterization, and elucidation of the structure and reactivities of Fe(III) porphyrin dication complexes are quite important. Especially, it allows us to fulfill a series of two-electron-oxidized forms of Fe(III) porphyrin complexes.

In this paper, we report the preparation, characterization, and reactions of the novel Fe^{III}TMP dication and Fe^{III}TDCPP dication complexes.

Results and Discussion

Preparation and Characterization of Fe^{III}TMP N-Oxide (1a). Fe^{III}TMP N-oxide (1a) was prepared in the reaction of Fe^{III}-TMP(OH) and mCPBA in toluene at 0 °C according to the procedure reported before.3 While 1a has been characterized to be ferric high spin bearing the bridged Fe-O-N structure based on the magnetic susceptibility $(5.4 \mu_B)^{3a,b}$ and resonance Raman spectroscopy, 3c its EPR signal was not well-defined. In addition, no β -pyrrole proton resonances of 1a have been identified by ¹H NMR, because of broadening of signals. In this study, we have successfully prepared an EPR sample of 1a to observe well-defined signals at g = 9.0, 5.0, 3.8, and 3.5 (Figure 1a). Though the UV-vis spectrum of the EPR sample solution shows almost complete formation of 1a (Figure 1a, inset), the EPR spectrum gives some signals due to impurities. The signals observed at 7.1, 6.1, and 1.98 are readily attributed to unreacted Fe^{III}TMP(OH) and Fe¹¹¹TMP(m-chlorobenzoate) in comparison with the authentic samples, respectively. These assignments are further

Chem. 1982, 21, 1427-1430.
(3) (a) Groves, J. T.; Watanabe, Y. J. Am. Chem. Soc. 1986, 108, 7836-7837. (b) Groves, J. T.; Watanabe, Y. J. Am. Chem. Soc. 1988, 110, 8443-8452. (c) Mizutani, Y.; Watanabe, Y.; Kitagawa, T. Submitted for publication.
(4) Watanabe, Y.; Takehira, K.; Shimizu, M.; Hayakawa, T.; Orita, H.;

Kaise, M. J. Chem. Soc., Chem. Commun. 1990, 18, 1262-1264.
(5) (a) Back, H. K.; Van Wart, H. E. Biochemistry 1989, 28, 5714-5719.

⁽b) Baek, H. K.; Van Wart, H. E. J. Am. Chem. Soc. 1992, 114, 718-725.

^{(6) (}a) Fajar, J.; Borg, D. C.; Forman, A.; Dolphin, D.; Felton, R. H. J. Am. Chem. Soc. 1970, 92, 3451-3459. (b) Dolphin, D.; Niem, T.; Felton, R. H.; Fujita, I. J. Am. Chem. Soc. 1975, 97, 5288-5290. (c) Chang, D.; Malinsky, T.; Ulman, A.; Kadish, K. M. Inorg. Chem. 1984, 23, 817–824.
(7) Phillippi, M. A.; Shimomura, E. T.; Goff, H. M. Inorg. Chem. 1981, 20, 1322–1325. Lee, W. A.; Calderwood, T. S.; Bruice, T. C. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 4301-4305.

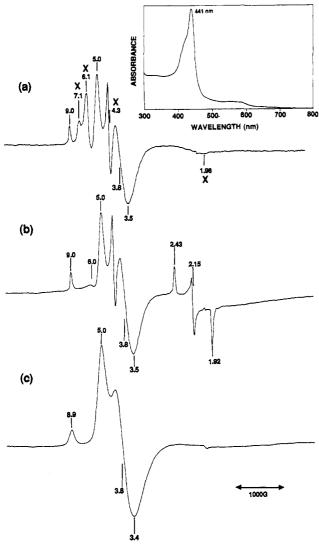


Figure 1. (a) EPR spectrum of Fe^{III}TMP N-oxide (1a) in toluene at 77 K; inset, UV-vis spectrum of the EPR sample solution; (b) an excess amount of pyridine added to a; (c) EPR spectrum of Fe^{lli}EDTA μ-peroxide in H₂O at 77 K.

confirmed by adding an excess amount of pyridine to the EPR solution, causing the replacement of the absorption at 7.1 and 6.1 by those at 2.43, 2.15, and 1.92, according to the formation of the ferric low-spin complex, Fe¹¹¹TMP(Py)₂ (Figure 1b), while the signals observed at 9.0, 5.0, 3.8, and 3.5 remain unchanged. In addition, a sharp signal at 4.3 comes from a nonheme ferric complex due to the decomposition of **1a**. That the E/D value for 1a is estimated to be 0.20 by the g-value-E/D diagram⁸ indicates unusually large rhombicity of the ligand field. Very similar rhombicity in the EPR spectrum has been also observed for an Fe^{III}EDTA μ-peroxide complex⁹ (Figure 1c). The amounts of Fe^{III}TMP and nonheme iron(III) species remaining as impurities in the EPR sample solution were estimated in comparison of the UV-vis and EPR10 spectra shown in Figure 1 with authentic samples to be <5% and <2%, respectively.

In order to identify the chemical shifts of β -pyrrole in 1a, the ²H NMR spectrum of 1a-β-pyrrole-d₈ at -50 °C in toluene was examined, since no appreciable resonances were observed by ¹H NMR. As shown in Figure 2, $1a-\beta$ -pyrrole- d_8 gives four pyrrole deuterium signals at 41.2, 71.7, 106, and 126 ppm. Appearance of the intense peak at 106 ppm is caused by overlapping of a small amount of β -pyrrole- d_8 of Fe^{III}TMP(m-chlorobenzoate) remaining in the sample solution. Curie plots of the temperature dependency of the chemical shifts of 1a are shown in Figure 2 (inset). The linear behavior of the resonances is indicative of the spin state of 1a being unchanged over the accessible temperature range. Observation of β -pyrrole deuterium resonances in the downfield and EPR spectroscopic feature is in good agreement with the previous assignment of 1a to be ferric high spin with large rhombic symmetry.3

Reaction of Fe(II) Porphyrin N-Oxides (1) with Acid. Reaction of 1a with acid was examined by UV-vis spectroscopy at low temperature. Upon addition of trifluoroacetic acid (TFA) to a toluene solution of 1a at ca. -30 °C, an immediate spectral change of 1a to 2a followed by relatively slow spectral changes to 3a was observed (Figure 3). While the reaction of TFA and Fe^{III}TDCPP N-oxide (1b) shows similar spectroscopic changes (Figure 3, inset), 3b is less stable than 3a under the reaction conditions.

Titration of 1 with TFA indicates that the stoichiometric amount of acid is consumed to complete the conversion of 1 to 2. Upon the addition of an acid scavenger such as pyridine to a toluene solution of 2, instantaneous reproduction of 1 was observed. The red-shifted soret band of 2 in the UV-vis spectrum is indicative of N-substituted iron porphyrin complex formation. 11 In addition, heterocyclic N-oxides are known to react with electrophiles such as proton and acyl halides at the N-oxide oxygen to yield the corresponding N-hydroxy and N-acyloxy derivatives. 12 Thus, 2 is assigned as a protonated form of 1.

Conversion of 2 to 3. While the stoichiometric reaction of 1a with TFA affords 2a as a stable species at -30 °C under the diluted condition (ca. 10⁻⁵ M), introduction of additional TFA to the solution accelerates further reaction of 2a to 3a. The rate of formation of 3a was dependent on the amount of TFA added, as described before.4 The reaction of 2b with TFA took place like 2a; however, the rate of 3b formation became much slower. In addition, slow decomposition of 3a to the Fe^{III}TMP cation radical (4a)13a at -30 °C was observed. Finally, 4a is reduced to Fe^{III}TMP when the solution is warmed to room temperature.⁴ Replacement of toluene with chlorobenzene as the solvent decreases the rates of 4a formation ($k_{\text{tol}} = 4.8 \times 10^{-4} \text{ s}^{-1}$, $k_{\text{Cl}} =$ $2.0 \times 10^{-4} \text{ s}^{-1}$). These results are summarized in Scheme I.

The transformation of 3a to the corresponding Fe(III) porphyrin cation radical implies that 3a is at least one (and possibly two) electron oxidized from the parent Fe^{III}TMP species. Though there are several candidates for the structure of 3a, i.e., Fe¹VTMP, Fe¹VTMP¹⁺, Fe¹VTMP, and Fe¹IITMP²⁺, the former two species are readily eliminated from our consideration on the basis of their characteristic optical spectra.¹³ Very recently, Goff and we have independently prepared O=Fe(V) porphyrin¹⁴ and found that the UV-vis spectra of O=Fe(V) porphyrin complexes are very different from that of 3a. More surprisingly, optical spectra of metalloporphyrin dication species of Zn, Mg, and Ni prepared by electrochemical oxidation are very similar to that obtained for 3a.6 Especially, no appreciable Q band for 3a in the visible region is quite indicative of the loss of two electrons in the A_{2u} (HOMO) orbital of the porphyrin ring.^{6a} In addition,

⁽⁸⁾ Trautwein, A. X.; Bill, E.; Bominaar, E. L.; Winkler, H. In Structure and Bonding; Clarke, M. J.; Goodenough, J. B.; Ibers, J. A.; Jørgensen, C. K.; Mingos, D. M. P.; Neilands, J. B.; Palmer, G. A.; Marburg, D. R., Sadler, P. J.; Weiss, R.; Williams, R. J. P., Eds.; Springer-Verlag: Berlin, Heidelberg, New York, 1991; Vol. 78, pp 1–95.
(9) Fujii, S.; Ohya-Nishiguchi, H.; Hirota, N. Inorg. Chim. Acta 1990,

⁽¹⁰⁾ As the authentic sample of nonheme impurity, the EPR spectrum of Na[FeIIIEDTA] solution was examined.

⁽¹¹⁾ Jackson, A. H. In The Porphyrins; Dolphin, D., Ed.; Academic Press: New York, 1978; Vol. 1, p 341.
(12) Katritzky, A. R.; Lagowski, J. M. Chemistry of the Heterocyclic

N-oxides; Academic Press: London, 1971; Chapter 3.

^{(13) (}a) Groves, J. T.; Quinn, R.; McMurry, T. J.; Barnett, G. H.; Lang, G.; Boso, W. B. J. Chem. Soc., Chem. Commun. 1984, 1455-1456. (b) Groves, J. T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.; Evans, B. J. J. Am. Chem. Soc. 1986, 108, 7834-7836.

^{(14) (}a) Nanthakumar, A.; Goff, H. M. J. Am. Chem. Soc. 1990, 112, 4047–4049. (b) Yamaguchi, K.; Watanabe, Y.; Morishima, I. J. Chem. Soc., Chem. Commun. 1992, 1721-1723.

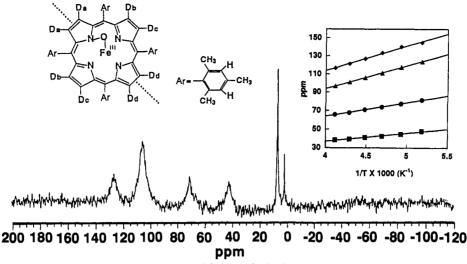


Figure 2. ²H NMR spectrum (pyrrole-d) of 1a in toluene at -50 °C; inset, Curie plots.

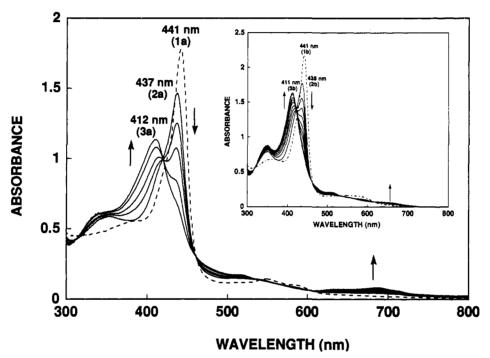


Figure 3. Time-dependent UV-vis spectral changes of 1a $(2.0 \times 10^{-5} \text{ M})$ upon the addition of 16 molar equiv of TFA in toluene at -30 °C, cycle time 2 min; inset, time-dependent UV-vis spectral changes of 1b $(1.9 \times 10^{-5} \text{ M})$ upon the addition of 50 molar equiv of TFA in toluene at -30 °C, cycle time 2 min.

Scheme I

Por: a, TMP; b, TDCPP

iodometric titration of 3a showed the completion of the reduction of 3a to Fe¹¹¹TMP by 2 molar equiv of I⁻. All the results support the Fe¹¹¹TMP dication formulation for 3a. To get into the detail of the structure of 3a, we have examined 3a by EPR and ²H NMR spectroscopies.

Further Characterization of the Fe^{III}TMP Dication Complex. EPR Spectral Measurement for 3a. Like the reactions in a UV-cell, EPR spectral changes for the formation of 3a were examined. When 40 equiv of TFA was added to a toluene solution of 1a at

-80 °C, an EPR spectral change giving new signals at 9.5 and 4.25 for 3a was observed (Figure 4a,b). As indicated before, the starting solution of 1a contains a small amount of unreacted Fe^{III}TMP species, which reacts with TFA to afford Fe^{III}TMP-(TFA) with an EPR signal at g=6.1. Upon warming the solution to -30 °C, the intensity of the signals observed at 9.5 and 4.25 gradually decreases according to the reduction of 3a by toluene to afford the EPR silent Fe^{III}TMP cation radical (4a) (Figure 4c,d). The reactions in the EPR sample solution were simultaneously monitored by means of UV-vis spectroscopy to confirm the formation of 3a and 4a in Figure, parts 4b and 4d, respectively. Appearance of the free radical signal at g=2.005 in Figure 4 and discouragement of the reduction rate of 3a in chlorobenzene indicate that the solvent itself is a reductant of 3a.

The EPR spectroscopic measurements described above are a clear demonstration of 3a being a ferric high-spin complex having rhombic symmetry, with E/D value of 0.29. The large E/D value indicates that the porphyrin ring of the dication complex exhibits large nonplanarity.¹⁵

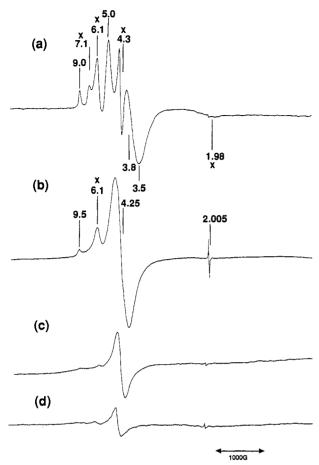


Figure 4. EPR spectral changes for the formation of 3a in toluene at 77 K: (a) 1a; (b) 40 molar equiv of TFA added to a; (c) 1 h after at -30 °C; (d) 2 h after at -30 °C.

Table I. Chemical Shifts of the β -Pyrrole Deuterium in Toluene at -80 °C

complex	shifts (ppm)
Fe ^{III} TMP <i>N</i> -oxide (1a)	48, 82, 124, 145
Fe ^{III} TMP ²⁺ (3a)	118 (-75) ^a
Fe ^{III} TMP ²⁺ (4a)	108

^a A small signal at -75 ppm was also observed, although we were not able to assign it.

Deuterium NMR Spectral Changes for the Formation of 3a. The reaction of $1a-\beta$ -pyrrole- d_8 with TFA was also examined by ²H NMR spectroscopy. According to the formation of 3a, four β -pyrrole deuterium signals of **1a** were replaced with a single resonance at 118 ppm. 16 In addition, the chemical shift of the signal obeys Curie's law in the temperature range -80 to -40°C. Replacement of the resonance at 118-108 ppm was observed when the temperature was raised to -30 °C, according to the formation of the Fe^{III}TMP cation radical (4a). The chemical shifts of the β -pyrrole deuterium resonances for 1a, 3a, and 4a are summarized in Table I. The conversion of 1a to 3a, and then to 4a, in the NMR sample solution was also confirmed by UV-vis spectroscopic measurements. A large downfield hyperfine shift of the β -pyrrole deuterium resonance for 3a indicates the location of an unpaired electron in the $d_{x^2-y^2}$ orbital, as in the case of the ferric high-spin (S = 5/2) complex.

There are two types of orbitals $(A_{1u} \text{ and } A_{2u})$ in the HOMO of metalloporphyrins, and the HOMO of Fe^{III}TMP is known to

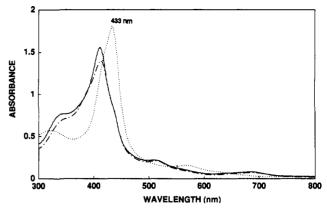


Figure 5. UV-vis spectral change for the reaction of 3a $(2.6 \times 10^{-5} \text{ M})$ with methanol: (a) (-) 3a; (b) (···) an excess amount of methanol added to a; (c) $(-\cdot -)$ an excess amount of TFA added to b.

be A_{2u}.¹⁷ The A_{2u} orbital of the porphyrin ring exhibits large electron density at the meso carbons and pyrrole nitrogens. In the case of the Fe^{III}TMP dication, the loss of two electrons from the A_{2u} orbital induces substantial amounts of positive charge at the meso carbons and pyrrole nitrogens. Therefore, the ligand field around the central iron turns much weaker and the energy level of the $d_{x^2-y^2}$ orbital becomes lower. These effects apparently favor the electronic configuration of ferric porphyrin dication complexes to be in the high-spin state. These considerations are consistent with the observation of the β -pyrrole deuterium resonance at 118 ppm at -80 °C and the EPR spectrum of 3a at 77 K.

Iodometric titration and UV-vis, EPR, and NMR spectroscopic measurements are in good agreement with the formulation of 3 being the Fe(III) porphyrin dication. It has been known that the reactions of methanol with metalloporphyrin dication complexes such as ZnII-, MgII-, and NiIITPP dication complexes are commonly observed to produce the corresponding isoporphyrins. 18 Thus, we have examined the reaction of 3a and methanol.

Reaction of the Fe^{III}TMP Dication with Methanol. When an excess amount of methanol was added to a CH2Cl2-toluene solution of 3a at -30 °C, the soret band was blue shifted by 20 nm, as presented in Figure 5. The UV-vis spectrum of the product (5a) is clearly different from those of isoporphyrins, which show intense absorbance at a near-IR region. 18 More importantly, the UV-vis spectrum of 5a is quite similar to that of 2a, and an EPR spectrum of 5a gave signals at 9.2 and 4.22, indicating 5a to be a ferric high-spin complex having a substituent at a pyrrole nitrogen. When an excess amount of TFA was added to the resulting solution, 3a was re-produced with a small loss of intensity. These results suggest 5a being Fe^{III}TMP N-methoxide by nucleophilic attack of methanol at a pyrrole nitrogen of 3a instead of a meso position, since the meso position of 3a is protected by the o-methyl groups of mesitylene. In order to characterize 5a. demetalation of 5a was carried out by adding HCl-AcOH.3 Surprisingly, the ¹H NMR spectrum of the demetalated product of 5a is identical to that of H₂TMP N-oxide, as described in the experimental section. FAB mass spectroscopy (M⁺, 798; M⁺ – O, 782) also provides evidence that the demetalated product is H₂TMP N-oxide. Though the formation of H₂TMP N-oxide upon treatment of 5a with acid was observed, the UV-vis spectrum of 5a is different from that of 1a. This implies the hydrolysis of Fe¹¹¹TMP N-methoxide during the demetalation.

The production of Fe¹¹¹TMP N-methoxide from 3a demonstrates that the formal oxidation state of 3a is the same as that

⁽¹⁵⁾ Tsai, R.; Yu, C. A.; Gunsalus, I. C.; Peisach, J.; Blumberg, W.; Orme-Johnson, W. H.; Beinert, H. Proc. Natl. Acad. Sci. U.S.A. 1970, 66, 1157-

⁽¹⁶⁾ A less intense resonance at -75 ppm was also observed, although we were not able to assign it.

⁽¹⁷⁾ Phillippi, M. A.; Goff, H. M. J. Am. Chem. Soc. 1982, 104, 6026-6034.

^{(18) (}a) Dolphin, D.; Felton, R. H.; Borg, D. C.; Fajar, J. J. Am. Chem. Soc. 1970, 92, 743-745. (b) Gold, A.; Ivey, W.; Toney, G. E.; Sangaiah, R. Inorg. Chem. 1984, 23, 2932-2935. (c) Guzinski, J. A.; Felton, R. H. J. Chem. Soc., Chem. Commun. 1973, 715-716.

⁽¹⁹⁾ Lindsey, J. S.; Wagner, R. W. J. Org. Chem. 1989, 54, 828-836.

of 1a, i.e., two electron oxidized from the Fe^{III}TMP complex, consistent with iodometric titration of 3a. EPR and NMR spectra provide solid evidence for the electronic structure of the central iron being in the ferric high-spin state. In addition, the loss of a Q band in the UV-vis spectrum of 3 is typical of the dication formation, but were different from those of the Fe(IV) porphyrin cation radical and Fe(V) porphyrin. These results are a clear demonstration of the formulation of the Fe(III) porphyrin dication complex for 3.

The preparation of the dication complex of Fe(III) porphyrin shows possible manipulation of the two-electron-oxidized equivalent in various forms by Fe porphyrin, i.e., the O=Fe(IV) porphyrin π-cation ratical, ^{13b} O=Fe(V) porphyrin, ¹⁴ Fe(III) porphyrin N-oxide,3 and the Fe(III) porphyrin dication.

In conclusion, we have prepared novel Fe(III) porphyrin dication complexes by the reaction of Fe(III) porphyrin N-oxides and TFA. The electronic structure of the dication is determined to be ferric high spin with unusually large rhombic symmetry on the basis of EPR and ²H NMR measurements. The reaction of methanol with the Fe^{III}TMP dication affords Fe^{III}TMP N-methoxide instead of isoporphyrin.

Experimental Section

Materials. CH₂Cl₂ and toluene were distilled from CaH₂. mCPBA was purified by washing with an aqueous sodium bicarbonate solution. H₂TMP and H₂TDCPP was prepared by the reported method with modification.¹⁸ Iron was inserted into H₂TMP and H₂TDCPP by a standard procedure. FeiiiTMP(OH) and FeiiiTDCPP(OH) were prepared as described earlier.²⁰ Fe¹¹¹EDTA µ-peroxide was prepared by the method previously reported.9

Physical Measurement. ²H NMR spectra were recorded at 46.1 MHz on a Nicolet NT-300 spectrometer, and the ¹H NMR spectrum was recorded at 500 MHz on a GE Omega 500 spectrometer. Chemical shifts are reported either relative to residual solvent resonances (toluene δ 7.2, CH₂Cl₂ δ 5.3) or relative to that of tetramethylsilane. UV-vis spectra were obtained with a Shimadzu 2200 spectrophotometer equipped with thermoelectric cold cells. EPR spectra were obtained with a JEOL PE-2X spectrometer.

Preparation of Deuterated Porphyrin. Mesitylene was treated with 10 M sulfuric acid-d₂ at 50 °C for 1 h twice to afford 60%-enriched mesitylened₃, as estimated from the ¹H NMR spectrum.²¹ Conversion of mesitylene d_3 to mesitaldehyde- d_2 was accomplished by a literature method.²² Pyrrole- d_5 was prepared by acetic acid- d_1 exchange, as described by Fajer et al.23 Pyrrole-d₈ and m-d₈ H₂TMP were prepared from pyrrole-d₅ and mesitaldehyde- d_2 in the usual manner.¹⁹

Preparation of 1. To a stirred solution of Fe¹¹¹TMP(OH) (5 mg, 6.3 mmol) in toluene (10 mL) was slowly added a solution of mCPBA (3 mg, 18.9 mmol) in toluene (5 mL) at 0 °C. Completion of the reaction was monitored by UV-vis spectral changes of the solution. Fe¹¹¹TDCPP N-oxide (1b) was also prepared in the same manner at -5 °C.

Preparation of the NMR and EPR Samples of 1a and 3a. A roundbottom flask was charged with Fe¹¹¹TMP(OH) (5.0 mg, 6.8 µmol), sodium acetate (100 mg, 1.2 mmol), and toluene (10 mL). The resulting solution was stirred at -10 °C, and mCPBA was added stepwise until complete formation of 1a. Evaporation of the solvent at -30 °C reduced the volume to ca. 1 mL. The toluene solution was transferred to an NMR or EPR tube at -60 °C. The NMR and EPR samples of 3a were prepared by the addition of a toluene solution of TFA to the NMR and EPR samples of 1s

Preparation of the EPR Sample of 5a. A 200-µL toluene solution of TFA (40 molar equiv) was added to a 10-mL toluene solution (10-4 M) of 1a at -80 °C to afford 3a. The resulting solution was added to 60 mL of CH₂Cl₂ which had been precooled at -80 °C to obtain a CH₂Cl₂toluene solution (6:1) of 3a. The complete formation of 5a can proceed either by adding a large excess amount of methanol or by introducing a small excess amount of methanol containing n-Bu₄NOH to neutralize the solution. Evaporation of the solution at -30 °C reduced the volume to ca. 3 mL. The solution was transferred to an EPR tube at -60 °C for the measurement

Demetalation of 5a. A 25-mL HCl-AcOH (1:4) solution was added to a 200-mL solution of 5a at -30 °C. After complete color change from yellow to green, the solution was washed with saturated NaHCO3 solution. The CH₂Cl₂ solution was evaporated at -5 °C to a volume of 50 mL, and the resulting solution was then submitted to column chromatography (SiO₂). The product was eluted with benzene-ethyl acetate (10:1) to give a dark brown band which contained H2TMP N-oxide. The yield of the N-oxide was 39%. ¹H NMR (ppm in CD₂Cl₂), pyrrole, δ 8.53 (4 H, ABq, J = 20.8, 5.0), 8.42 (2 H, s), 7.50 (2 H, s); m-H, 7.26 (8 H, s); p-Me, 2.60 (12 H, s); o-Me, 1.88 (12 H, s), 1.89 (12 H, s); N-H, 1.72 (2 H, s).

⁽²⁰⁾ Woon, T. C.; Shirazi, A.; Bruice, T. C. Inorg. Chem. 1986, 25, 3845-

⁽²¹⁾ Groves, J. T.; Quinn, R.; McMurry, T. J.; Nakamura, M.; Lang, G.; Boso, B. J. Am. Chem. Soc. 1985, 107, 354-360.

⁽²²⁾ Rieche, A.; Gross, H.; Höft, E. Organic Syntheses; Wiley: New York,

^{1973;} Collect. Vol. V, pp 49-51.
(23) Fajar, J.; Borg, D. C.; Forman, A.; Felton, R. H.; Vegh, L.; Dolphin, D. Ann. N.Y. Acad. Sci. 1974, 206, 349.